Formal Estimation of Collision Risks for Autonomous Vehicles: A Compositional Data-Driven Approach

نویسندگان

چکیده

In this work, we propose a compositional data-driven approach for the formal estimation of collision risks autonomous vehicles (AVs) with black-box dynamics while acting in stochastic multi-agent framework. The proposed is based on construction sub-barrier certificates each agent via set data collected from its trajectories providing an priori guaranteed confidence estimation. our setting, first cast original risk problem as robust optimization program (ROP). Solving acquired ROP not tractable due to unknown model that appears one constraints. To tackle difficulty, collect finite numbers and provide scenario (SOP) corresponding ROP. We then establish probabilistic bridge between optimal value SOP ROP, accordingly, formally construct certificate number required level confidence. technique small-gain reasoning quantify AVs some desirable individual agents constructed data. For case compositionality conditions are satisfied, relaxed version results without requiring any but at cost potentially conservative risk. Eventually, also present approaches non-stochastic AVs. demonstrate effectiveness by applying them vehicle platooning consisting 100 1 leader 99 followers. estimate whole network collecting sampled agent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probabilistic Approach to Collision Risk Estimation for Passenger Vehicles

Active safety and collision avoidance (CA) is a growing field within the automotive industry. The aim of CA systems is to prevent or mitigate collisions by active interventions i.e. warning, braking and steering. For many reasons, such as driver acceptance of the system and legal requirement that the system itself must not cause hazards, the decision making is a crucial part of the system. This...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A ’Cognitive Driving Framework’ for Collision Avoidance in Autonomous Vehicles

The Cognitive Driving Framework is a novel method for forecasting the future states of a multi-agent system that takes into consideration both the intentions of the agents as well as their beliefs about the environment. This is particularly useful for autonomous vehicles operating in an urban environment. The algorithm maintains a posterior probability distribution over agent intents and belief...

متن کامل

Semi - autonomous Control of Multiple Heterogeneous Vehicles for Intersection Collision

This paper describes the design of a supervisory controller (supervisor) that manages multiple heterogeneous vehicles, i.e., multiple controlled and uncontrolled vehicles, to avoid intersection collisions. Two main problems are addressed: verification of the safety of all vehicles at an intersection, and management of the inputs of controlled vehicles. For the verification problem, we employ an...

متن کامل

Intent-Estimation- and Motion-Model-Based Collision Avoidance Method for Autonomous Vehicles in Urban Environments

Existing collision avoidance methods for autonomous vehicles, which ignore the driving intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban environments because of their high false detection rates of collisions with vehicles on winding roads and the missed detection rate of collisions with maneuvering vehicles. This study introduces an intent-estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Control of Network Systems

سال: 2023

ISSN: ['2325-5870', '2372-2533']

DOI: https://doi.org/10.1109/tcns.2022.3203363